Extensions 1→N→G→Q→1 with N=C23×He3 and Q=C2

Direct product G=N×Q with N=C23×He3 and Q=C2
dρLabelID
C24×He3144C2^4xHe3432,563

Semidirect products G=N:Q with N=C23×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×He3)⋊1C2 = C2×D4×He3φ: C2/C1C2 ⊆ Out C23×He372(C2^3xHe3):1C2432,404
(C23×He3)⋊2C2 = C2×He36D4φ: C2/C1C2 ⊆ Out C23×He372(C2^3xHe3):2C2432,377
(C23×He3)⋊3C2 = C2×He37D4φ: C2/C1C2 ⊆ Out C23×He372(C2^3xHe3):3C2432,399
(C23×He3)⋊4C2 = C23×C32⋊C6φ: C2/C1C2 ⊆ Out C23×He372(C2^3xHe3):4C2432,558
(C23×He3)⋊5C2 = C23×He3⋊C2φ: C2/C1C2 ⊆ Out C23×He372(C2^3xHe3):5C2432,561

Non-split extensions G=N.Q with N=C23×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×He3).1C2 = C22⋊C4×He3φ: C2/C1C2 ⊆ Out C23×He372(C2^3xHe3).1C2432,204
(C23×He3).2C2 = C623C12φ: C2/C1C2 ⊆ Out C23×He372(C2^3xHe3).2C2432,166
(C23×He3).3C2 = C624Dic3φ: C2/C1C2 ⊆ Out C23×He372(C2^3xHe3).3C2432,199
(C23×He3).4C2 = C22×C32⋊C12φ: C2/C1C2 ⊆ Out C23×He3144(C2^3xHe3).4C2432,376
(C23×He3).5C2 = C22×He33C4φ: C2/C1C2 ⊆ Out C23×He3144(C2^3xHe3).5C2432,398
(C23×He3).6C2 = C22×C4×He3φ: trivial image144(C2^3xHe3).6C2432,401

׿
×
𝔽